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Abstract

In system Z, reasoning is done with respect to a unique mini-
mal ranking function obtained from a partitioning of the con-
ditionals in a knowledge base. In this paper, we extend system
ZFO, a recent proposal for a system Z-like approch to first-
order conditionals. We introduce the notion of tolerance pair
and show how sceptical ZFO-inference can be defined and im-
plemented by taking all minimal tolerance pairs into account.

1 Introduction

In nonmonotonic reasoning over a conditional knowledge
base R, system Z (Pearl 1990) is a well-established ap-
proach where entailment for R is defined with respect to
an ordinal conditional (OCF) (Spohn 2012) obtained from a
unique partitioning of the conditionals in R. System Z has
spawned a number of extensions (e.g. (Goldszmidt, Mor-
ris, and Pearl 1993; Bourne and Parsons 1999)). Recently,
a proposal for a system ZFO with system Z-like OCFs for
first-order conditionals has been made (Kern-Isberner and
Beierle 2015), based on the first-order conditional semantics
using OCFs developed in (Kern-Isberner and Thimm 2012).
In (Kern-Isberner and Beierle 2015), certain partitionings of
the conditionals in R and of the constants are assumed to be
given. This paper extends that approach in several directions.
We introduce the notion of tolerance pair, define sceptical
ZFO-inference with respect to all OCFs obtained from mini-
mal tolerance pairs, and develop an algorithm computing ex-
actly all minimal tolerance pairs. We also give an overview
of the software system ZIFO that implements system ZFO

and ZFO-inference.

2 Background: OCFs and System Z

In propositional settings, ordinal conditional functions
(OCF, (Spohn 2012)), also called ranking functions are a
well-known framework for nonmonotonic reasoning and be-
lief revision. We recall very briefly the basic details of this
approach and System Z (Pearl 1990; Goldszmidt and Pearl
1996). Let LΣ be a propositional language over a set Σ of
propositional atoms. Let Ω denote the set of possible worlds
over L; Ω will be taken simply as the set of all propositional
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interpretations over L and can be identified with the set of
all complete conjunctions over Σ. For ω ∈ Ω, ω |= A means
that the propositional formula A ∈ LΣ holds in the possible
world ω. A (propositional) conditional (B|A) is an object
of a three-valued nature, partitioning the set of worlds Ω in
three parts: those worlds satisfying AB, thus verifying the
conditional, those worlds satisfying AB, thus falsifying the
conditional, and those worlds not fulfilling the premise A
and so which the conditional may not be applied to at all.

An ordinal conditional function is a function κ : Ω →
N ∪ {∞} with κ−1(0) �= ∅ which maps each world ω ∈ Ω
to a degree of implausibility κ(ω); ranks of formulas A ∈
LΣ are defined by κ(A) = min{κ(ω) | ω |= A} with
min(∅) = ∞. An OCF κ accepts a conditional (B|A), in
symbols κ |= (B|A), if and only if κ(AB) < κ(AB), that
is, if and only if the conditional’s verification AB is more
plausible than its falsification AB. In this case, we call κ a
(ranking) model of (B|A), and κ is a (ranking) model of a
conditional knowledge base R if it is a model of each of the
conditionals in R.

For a given conditional knowledge base R =
{(B1|A1), . . . , (Bn|An)}, the system Z approach by Pearl
(Pearl 1990; Goldszmidt and Pearl 1996) defines an OCF κz

that is a model of R and that is unique among all such mod-
els in that it restricts the plausibility of worlds in a minimal
way. System Z is based on a notion of tolerance: A condi-
tional (B|A) is tolerated by R if and only if there is a world
ω ∈ Ω such that ω |= AB and ω |= Ai ⇒ Bi for every
1 � i � n, i.e. iff ω verifies (B|A) and does not falsify
any (Bi|Ai). Now, system Z is set up by first partitioning
R = R0 ∪ . . . ∪ Rm into maximal sets Rj such that each
conditional in Rj is tolerated by ∪i�jRi. Then the function
Z : R → N is defined by Z(B|A) = k iff (B|A) ∈ Rk, and
finally, κz is given by

κz(ω) =

⎧⎨
⎩

0, iff ω |= (Ai ⇒ Bi) for all 1 � i � n

max
1�i�n

{Z(Bi|Ai) | ω |= AiBi}+ 1, otherwise.

3 OCFs for First-Order Conditionals

We recall the basics of system ZFO (Kern-Isberner and
Beierle 2015). Let Σ be a first-order signature consisting
of a finite set of predicates PΣ and a finite set of constant
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symbols DΣ but without function symbols of arity > 0.
An atom is a predicate of arity n together with a list of n
constants and/or variables. A literal is an atom or a negated
atom. Formulas are built on atoms using conjunction (∧),
disjunction (∨), negation (¬), and quantification (∀, ∃). We
abbreviate conjunctions by juxtaposition and negations usu-
ally by overlining, e. g. AB means A∧B and A means ¬A.
A ground formula contains no variables. In a closed formula,
all variables (if they occur) are bound by quantifiers, other-
wise, the formula is open, and the variables that occur out-
side of the range of quantifiers are called free. If a formula A
contains free variables we also use the notation A(�x) where
�x = (x1, . . . , xn) contains all free variables in A. If �c is a
vector of the same length as �x then A(�c) is meant to denote
the instantiation of A with �c. A formula ∀�xA(�x) (∃�xA(�x))
is universal (existential) if A involves no further quantifica-
tion. Let LΣ be the first-order language that allows no nested
quantification, i.e., all quantified formulas are either univer-
sal or existential formulas.

LΣ is extended by a conditional operator “ | ” to a con-
ditional language (LΣ | LΣ) containing first-order condi-
tionals (B |A) with A,B ∈ LΣ, and (universally or ex-
istentially) quantified conditionals ∀�x(B |A), ∃�x(B |A)1.
When writing (B(�x) |A(�x)), we assume �x to contain
all free variables occurring in either A or B. For r =
(B |A) ∈ (LΣ | LΣ) (without outer quantification), we set
r = (B |A). Conditionals cannot be nested. When the sig-
nature is clear from context, we may omit the subscript Σ.

Definition 1. A first-order knowledge base KB = 〈F ,R〉
(over Σ) consists of a finite set of conditionals R from
(LΣ | LΣ) with the restriction that no existential (outer)
quantification of conditionals may occur, together with a set
F of closed formulas from LΣ, called facts.

In this way, we can accurately distinguish between
the statements “A certainly holds for all individuals”
(∀xA(�x) ∈ F), “it is plausible that A holds for all indi-
viduals” (∀xA(�x) ∈ R, treated as (∀xA(�x) | �)), and “A
is plausible” (A(�x) ∈ R, treated as (A(�x) | �)). In general,
having a classical (i. e., unconditional) formula A in F ex-
presses “A is certain” while A in R means “A is plausible”.

Example 2 (Penguins and super-penguins). Assume that
there are penguins (P), birds (B), and super-penguins (S)
as well as winged things (W) and flying things (F). Our
universe D = {p, t, s} consists of the objects resp. con-
stants t = Tweety, p = Polly, s = Supertweety. The knowl-
edge base KBpen = 〈F ,R〉 consists of the facts F =
{B(p), P (t), S(s), ∀xS(x) ⇒ P (x), ∀xP (x) ⇒ B(x)},
and R = {r1, r2, r3, r4} containing four open first-order
conditionals:

r1 : (F (x) |B(x)), r2 : (W (x) |B(x)),
r3 : (F (x) |P (x)), r4 : (F (x) |S(x)).

For classical interpretation of first-order aspects we use
the Herbrand semantics. The Herbrand base HΣ of a first-
order signature Σ is the set of all ground atoms of Σ. A pos-

1These quantifications will often be distinguished as outer
quantifications in the paper.

sible world ω is any subset of HΣ. Analogously to the propo-
sitional case, a possible world can be concisely represented
as a complete conjunction or minterm, i. e. a conjunction of
literals where every atom of HΣ appears either in positive or
in negated form. Also as in the propositional case, we denote
the set of all possible worlds of Σ by ΩΣ, and |= denotes
the classical satisfaction relation between possible worlds
and first-order formulas from LΣ. Just as in the proposi-
tional case, the set ΩΣ of possible worlds can be ranked by
an ordinal conditional function κ : ΩΣ → N ∪ {∞} with
κ−1(0) �= ∅ that assigns degrees of implausibility resp. dis-
belief to possible worlds, and we will show how to extend κ
to formulas in the first order case.

For an open conditional r = (B(�x) |A(�x)) ∈ (LΣ | LΣ),
H(B(�x) |A(�x)) denotes the set of all constant vectors �a
used for proper groundings of (B(�x) |A(�x)) from HΣ, i. e.
H(B(�x) |A(�x)) = D

|�x|
Σ where |�x| is the length of �x. For

�a ∈ H(B(�x) |A(�x)), let r(�a) = (B(�a) |A(�a)) denote the in-
stantiation of r by �a. In the following, A,B ∈ LΣ denote
closed formulas, A(�x), B(�x) ∈ LΣ denote open formulas.
Definition 3. Let κ be an OCF. The κ-ranks of closed for-
mulas are defined via

κ(A) = min
ω|=A

κ(ω)

Furthermore, we define the κ-ranks for open formulas by
evaluating most plausible instances:

κ(A(�x)) = min
�a∈HA(�x)

κ(A(�a))

The ranks of first-order formulas are coherently based on
the usage of OCFs for propositional formulas. For the ac-
ceptance of conditionals, we first consider closed formulas.
Definition 4. Let κ be an OCF. The acceptance relation |=
between κ and formulas from LΣ and (LΣ | LΣ) is
• for closed formulas:

– κ |= A iff for all ω ∈ Ω with κ(ω) = 0, it holds that
ω |= A.

– κ |= (B |A) iff κ(AB) < κ(AB).
• for universal/existential conditionals:

– κ |= ∀�x(B(�x) |A(�x)) iff κ |= (B(�a) |A(�a)) for all
�a ∈ H(B(�x) |A(�x)).

– κ |= ∃�x(B(�x) |A(�x)) iff there is �a ∈ H(B(�x) |A(�x))

such that κ |= (B(�a) |A(�a)).
Acceptance of a sentence by a ranking function is the

same as in the propositional case for ground sentences, and
interprets the classical quantifiers in a straightforward way.

The treatment of acceptance of open formulas express-
ing default statements like in “usually, if A holds, then B
also holds” is more intricate. The basic idea is that such
(conditional) open statements hold if there are individuals
providing most convincing instances of the respective con-
ditional. These so-called representatives should, of course,
allow for the acceptance of the instantiated conditional (as
in Definition 4) while most plausibly verifying the condi-
tional. Moreover, representatives are expected to be least ex-
ceptional with respect to falsifying the conditional.

627



Definition 5. Let r = (B(�x) |A(�x)) ∈ (LΣ | LΣ) be a non-
quantified conditional involving open formulas from LΣ. We
say that �a ∈ H(B(�x) |A(�x)) is a weak representative of r iff it
satisfies the following conditions:

κ(A(�a)B(�a)) = κ(A(�x)B(�x)) (1)

κ(A(�a)B(�a)) < κ(A(�a)B(�a)) (2)

The set of weak representatives of r is denoted by WRep(r).
We say that �a ∈ H(B(�x) |A(�x)) is a (strong) representative of
r iff it is a weak representative of r and

κ(A(�a)B(�a)) = min
�b∈WRep(r)

κ(A(�b)B(�b)). (3)

The set of all representatives of r is denoted by Rep(r).

(Weak) Representatives of a conditional are characterized
by being the most general and least exceptional; in (Kern-
Isberner and Beierle 2015), this is illustrated using the pen-
guin scenario. The definition of acceptance of open condi-
tionals is based on the notion of representatives as follows.

Definition 6. Let κ be an OCF and r = (B(�x) |A(�x))
an open (non-quantified) conditional. Then κ accepts r, de-
noted by κ |= r, iff Rep(r) �= ∅, and one of the two following
(exclusive) conditions is satisfied:

(Acc-1) κ(A(�x)B(�x)) < κ(A(�x)B(�x)) (4)

(Acc-2) κ(A(�x)B(�x)) = κ(A(�x)B(�x)), and for all
�a1 ∈ Rep((B(�x) |A(�x))) and for all �a2 ∈
Rep((B(�x) |A(�x))), it holds that

κ(A(�a1)B(�a1)) < κ(A(�a2)B(�a2)). (5)

The acceptance of an open conditional is based on the
existence of a suitable �a satisfying (2), i. e., on the accep-
tance of the propositional conditional (B(�a) |A(�a)) (note
that Rep((B(�x) |A(�x))) �= ∅ iff WRep((B(�x) |A(�x))) �=
∅). However, conditions (1) and (2) alone are too weak to
justify the acceptance of (B(�x) |A(�x)) since it might well
be the case that there are �a and �b fulfilling (1) and (2) for
(B(�x) |A(�x)) and (B(�x) |A(�x)), respectively. This means
that κ might accept both (B(�x) |A(�x)) and (B(�x) |A(�x)),
which would be counterintuitive. Hence, we need to make
acceptance unambiguous by giving preference to one of the
two conditionals. This can be done either by postulating
(4) or (5). Condition (4) looks like a natural prerequisite
for the acceptance of (B(�x) |A(�x)). However, in the birds
scenario with penguins and super-penguins, equalities like
κ(A(�x)B(�x)) = κ(A(�x)B(�x)) quite naturally arise since
penguins are as normal non-flying birds as doves are normal
flying birds. In this case, (5) again uses the idea of least ex-
ceptionality for specifying proper representatives; it makes
(B(�x) |A(�x)) acceptable, as opposed to (B(�x) |A(�x)), if
the representatives of the first conditional less exceptionally
violate the respective conditional than the representatives of
the latter conditional.

Definitions 5 and 6 can be used to define acceptance
of open non-conditional formulas A(�x) by considering
them as conditionals with tautological antecedents, i.e.,

as (A(�x) | �). However, it is crucial to remark here that
(A(�x) | �) mandatorily demands for a default reading like
“being A is plausible”, as opposed to “A certainly holds”.
This distinction is made by distinguishing between certain
knowledge F (all elements here are closed formulas of LΣ)
and default (conditional) beliefs in R which may involve
both closed and open formulas.
Definition 7. Let KB = 〈F ,R〉 be a first-order knowledge
base, and let κ be an OCF.
1. κ accepts R, denoted by κ |= R, iff κ |= ϕ for all ϕ ∈ R.
2. κ accepts KB, denoted by κ |= KB, iff κ(ω) = ∞ for all

ω �|= F , and κ |= R.
If κ |= KB then we also say that κ is a model of KB. If there
is no κ with κ |= KB then KB is inconsistent.

4 Tolerance Pairs and Inference

In (Kern-Isberner and Beierle 2015), a system Z-like ranking
function for a first-order knowledge base is constructed from
a partitioning of its conditionals and constants. Here, we will
introduce the notions of tolerance pairs and their minimality
and develop an algorithm for computig them. This yields a
contructive way for generating system Z-like ranking func-
tions for first-order conditionals and in particular the set of
all ranking functions induced by minimal tolerance pairs.
Convention: As in (Kern-Isberner and Beierle 2015), we
consider a restricted form of knowledge bases. For the rest
of this paper, let KB = 〈F ,R〉 be a first-order knowledge
base over a language LΣ whose signature Σ consists of a set
of constants D and only unary predicates. The conditionals
in R can either involve open or closed formulas; we may
omit the (outer) quantification of conditionals, as no exis-
tential conditional may occur, and all universal conditionals
can be replaced by the set of all instantiations.
Definition 8 (Tolerance Pair). Let Rp = (R0, . . . ,Rm) and
Dp = (D0, . . . , Dm) be ordered partionings of R and D,
respectively. Then (Rp, Dp) is a tolerance pair for KB and
D iff for all i, for all r ∈ Ri, there is a ∈ Di and ω ∈ Ω with
ω |= F such that ω verifies r(a) and ω does not falsify r′(a′)
for all r′ ∈ ∪j�iRj and all a′ ∈ Di. By abuse of notation
we also call π = 〈(R0, D0), . . . , (Rm, Dm)〉 a tolerance
pair; by πi we denote the tuple (Ri, Di) of π, and by πR,i

and πD,i its components.
Example 9. Given the knowledge base KBpen from Exam-
ple 2, the following is a tolerance pair for KBpen and D:

π(1) = 〈({r1, r2} , {p}), ({r3} , {t}), ({r4} , {s})〉 (6)

The notion of tolerance pair transfers the idea of toler-
ance system Z is based on to the first-order setting. In (Kern-
Isberner and Beierle 2015) a theorem is given showing that
a tolerance pair induces a ranking function that accepts R.
Theorem 10 ((Kern-Isberner and Beierle 2015), κπ

z ). As-
sume that F is consistent and that no formula in F or
R mentions more than one constant or variable, and let
π = 〈(R0, D0), . . . (Rm, Dm)〉 be a tolerance pair. For
ω ∈ Ω, ω |= F , and for 0 � i � m, define

λi(ω)=

{
0, if r(a) is not falsified in ω ∀a ∈ Di, ∀r ∈ R
max
a∈Di

max
r∈R

{j | r∈Rj , ω falsif. r(a)}+1, otherw.
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Then the OCF κπ
z defined by κπ

z (ω) = ∞ for ω �|= F , and

κπ
z (ω) =

m∑

i=0

(m+ 2)iλi(ω)− κ0

κ0 = min
ω∈Ω

m∑

i=0

(m+ 2)iλi(ω)

(7)

for ω |= F , is a model of KB, called the OCF induced by π.

Example 11. For π(1) from Example 9 and the world
ω0 = B(p)F (p)P (p) S(p)W (p)B(t)F (t)P (t) S(t)W (t)
B(s)F (s)P (s)S(s)W (s), Theorem 10 gives us:

λ1(ω0) = 1 λ2(ω0) = 1 λ3(ω0) = 3 κ0 = 36

κπ(1)

z (ω0) = (1 ∗ 1) + (4 ∗ 1) + (16 ∗ 3)− 36 = 17

However, in (Kern-Isberner and Beierle 2015), no algo-
rithm for constructing the partitionings needed in Theorem
10 is given. For developing such an algorithm, we introduce
partition pairs as a generalization of tolerance pairs.
Definition 12 (Partition Pair). Let Rp = (R0, . . . ,Rm) and
Dp = (D0, . . . , Dm) be ordered partionings of subsets
R′ ⊆ R and D′ ⊆ D, respectively. Then (Rp, Dp) is
a partition pair for KB and D. Again, we also call π =
〈(R0, D0), . . . (Rm, Dm)〉 a partition pair.

For R′ = {r1, r3} ⊆ R and D′ = {p, t} ⊆ D from Ex. 2,
π = 〈({r1} , {p}), ({r3} , {t})〉 is a partition pair.

Given a partition pair π = 〈π0, . . . , πm〉 for a given
knowledge base, which partitions the subsets R′ ⊆ R and
D′ ⊆ D, there are several ways to extend it to new partition
pairs. As the pairs will be constructed incrementally, starting
with 〈(∅, ∅)〉, we only add new elements to the highest tuple
πm in each step. The following extensions are possible:

1. Add a conditional: For each conditional ri ∈ (R \ R′),
with 1 � i � n, n = |R \ R′|, a new partition pair π′ =
〈π0, . . . , (πR,m ∪ {ri}, πD,m)〉 can be created.

2. Add a constant: For each constant ai ∈ (D \ D′), with
1 � i � n, n = |D \ D′|, a new partition pair π′ =
〈π0, . . . , (πR,m, πD,m ∪ {ai})〉 can be created.

3. Enlarge the partition pair to m+1: A new tuple πm+1 =
(∅, ∅) can be added, yielding π′ = 〈π0, . . . , πm, (∅, ∅)〉.
As we need to have every set πR,i and πD,i for 0 � i � m
filled in a partition pair, this type of extension is only
applicable if πR,m and πD,m both already contain at
least one element. This makes sure that only the highest-
labeled tuple, πm+1 after this extension, can temporarily
have empty sets.

4. Add a conditional and a constant: For each (ri, aj) ∈
(R \ R′) × (D \ D′), with nR = |R \ R′| and nD =
|D \ D′|, a new partition pair π′ = 〈π0, . . . , (πR,m ∪
{ri}, πD,m ∪ {aj})〉 can be created.

Algorithm 1, GENTP, generates every tolerance pair for
a given knowledge base by incrementally extending parti-
tion pairs by performing one of these extension steps. Each
time a partition pair has been expanded with a new compo-
nent (∅, ∅) in step 3, step 4 is performed since it does not

Algorithm 1 GENTP

Input: KB = 〈F ,R〉 and D
Output: Set of tolerance pairs Π

1: Π ← ∅
2: V ← ∅
3: SEARCH(〈(∅, ∅)〉, 0,R, D)

4: function SEARCH(π, i,RL, DL)
5: if not TEST(π, i,RL, DL) then
6: return � Π contains calculated tolerance pairs
7: if πR,i = ∅ and πD,i = ∅ then � extension (4)
8: for (r, a) ∈ RL ×DL do
9: π′ ← π with π′R,i ← πR,i ∪ {r} and π′D,i ←

πD,i ∪ {a}
10: SEARCH(π′, i,RL \ {r}, DL \ {a})
11: else
12: for r ∈ RL do � extension (1)
13: π′ ← π with π′R,i ← πR,i ∪ {r}
14: SEARCH(π′, i,RL \ {r}, DL)
15: for a ∈ DL do � extension (2)
16: π′ ← π with π′D,i ← πD,i ∪ {a}
17: SEARCH(π′, i,RL, DL \ {a})
18: if πR,i �= ∅ and πD,i �= ∅ and RL �= ∅ and DL �= ∅

then � extension (3)
19: π′ ← 〈π0, . . . , πi, (∅, ∅)〉
20: SEARCH(π′, i+ 1,RL,DL)

make sense to perform just step 1 or step 2. If the subalgo-
rithm TEST(π, i,RL, DL) determines that the current parti-
tion pair can not be expanded to a tolerance pair, this path
is pruned from the search space. In the following, we will
present a refinement of TESTMIN ensuring that only minimal
tolerance pairs are generated.

Definition 13 (Minimal Tolerance Pair, ≺). Let Π denote the
set of possible tolerance pairs for KB and D. For π1 ∈ Π
with m1 partitions and π2 ∈ Π with m2 partitions we say
that π1 is smaller than π2, denoted by π1 ≺ π2, iff:

1. m1 < m2, or
2. m1 = m2 = m and there is 0 � i � m with ei-

ther |(π1)R,i| > |(π2)R,i| or |(π1)R,i| = |(π2)R,i| and
|(π1)D,i| > |(π2)D,i|, such that for all 0 � j < i,
|(π1)R,j | = |(π2)R,j | and |(π1)D,j | = |(π2)D,j |.

A tolerance pair π is minimal for KB and D iff there is no
π′ ∈ Π with π′ ≺ π.

Tolerance pair π(1) (Ex. 9) is minimal with respect to ≺.
In system Z, an algorithm finds a partition of R in which

every r ∈ Ri is tolerated by the set ∪m
j=i Rj (Pearl 1990). In

general, several partitions can exist that have this property.
Among them, the algorithm finds a unique one in which ev-
ery subset of the partition, from 0 to m, contains as many
conditionals as possible. This minimal partition is then used
to compute the ranking function κz . Extending this to the
relational case of system ZFO, a minimal tolerance pair en-
sures that from tuple π0 to πm, as many conditionals and as
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Algorithm 2 TESTMIN

1: function TESTMIN(π, i,RL, DL)
2: if πR,i = ∅ and πD,i = ∅ then � no tests for empty

tuple
3: return true
4: if π ∈ V then � node already expanded?
5: return false
6: else
7: V ← V ∪ {π}
8: if Π �= ∅ and π �PP πmin ∈ Π then � cannot be a

minimum
9: return false

10: if not POTENTIALTP(π,F ,RL) then
11: return false
12: if RL = ∅ and DL = ∅ then � tolerance pair found
13: if Π = ∅ or π ≺ πmin ∈ Π then � new minimum
14: Π ← {π}
15: else if π �≺ πmin ∈ Π, πmin �≺ π then � additional
16: Π ← Π ∪ {π} � minimum
17: return false
18: return true

many constants as possible are placed in the subsets.
System Z chooses the unique minimal partition since it

induces the ranking with minimal degrees of implausibility.
Thus, unless we have explicit information of the contrary,
we assume every world to be as plausible as possible.

Since in contrast to system Z, there is not a unique mini-
mal tolerance pair in system ZFO for every knowledge base,
we are interested in the set of all minimal tolerance pairs.
Let the algorithm GENTPMIN be the algorithm obtained by
replacing the call to TEST in line 5 of GENTP by a call to
the algorithm TESTMIN (Algorithm 2). In line 10, the func-
tion POTENTIALTP checks whether the current partition pair
satisfies the condition in Definition 8 and is a potential tol-
erance pair. In lines 12 to 18 of TESTMIN, if a partition pair
is found, it is checked whether it is smaller or equal to a pair
πmin already found. If equal, it is added to the set of min-
imal partition pairs. If it is smaller than the pairs found so
far, they can be discarded and only the new one is placed
in Π. In addition, line 8 of TESTMIN implements an addi-
tional pruning strategy. During the search, the pairs in set Π
are the smallest partition pairs found so far. If the currently
processed node represents a partition pair that is already big-
ger, its subtree can be safely skipped. The comparison �PP

used here is similar to � (given indirectly by Def. 13), with
the only difference that the highest-labeled subsets are not
taken into account since they are not yet final for π and could
have additional elements added. Thus, a subtree is skipped
if the current node’s partition pair already has more tuples
than the current minimum or if one subset πR,i or πD,i is
smaller than the corresponding subset of the current mini-
mum, with i ranging from 0 to m− 1. This kind of pruning
obviously does not influence the completeness of the search,
yielding the observation that Algorithm GENTPMIN is sound
and complete, i.e., that it generates exactly all minimal tol-
erance pairs for KB and D.

System Z yields a unique partitioning of the set of condi-
tionals and thus a unique OCF that is used for inference in
system Z. The next definition transfers this concept to sys-
tem ZFO by taking all minimal tolerance pairs into account.

Definition 14 (ZFO-inference, |∼zFO ). Let KB ba a knowl-
deg base, A, B formulas and κ an OCF. We say that A κ-
entails B (written A |∼ κ

B) iff κ |= (B|A). B is a (scepti-
cal) ZFO-inference from A in the context of KB, denoted by
A |∼KBzFOB, iff for all minimal tolerance pairs π of KB, we
have A |∼ κ

B where κ = κπ
z .

Section 5 illustrates ZFO-inference with some examples.

5 Implementing System ZFO

The software system ZIFO implements system ZFO: For any
KB and D, it can compute tolerance pairs and their induced
ranking functions, and it can compute the corresponding in-
ference relation induced by these ranking functions.

Figure 1 shows the user interface of system ZFO. It con-
sists of three main parts: a tool bar on the top and an input
and an output area in the bottom left and right. The input area
in Figure 1 shows the knowledge base KBpen from Exam-
ple 2 after automatic translation into ZIFO’s internal syn-
tax where universal quantification in F has been replaced
by groundings and formulas are expressed using only nega-
tion (!), conjunction (,) and disjunction (;). Once a knowl-
edge base has been loaded, tolerance pairs can be com-
puted using three different algorithms (brute force, GENTP,
GENTPMIN). The output area in Figure 1 shows all three tol-
erance pairs that exist for KBpen , the only difference among
them being that (W (x)|B(X)) is placed in another subset;
only the first tolerance pair is a minimal one.

After selecting a tolerance pair π, system ZFO offers op-
tion for computing the induced OCF κπ

z , given a detailed
explanation for the derivation of κπ

z , or for storing κπ
z (ω)

for all ω ∈ Ω in a CSV file. Consider the following output:
Selected tolerance pair:
Pair 1 (m=2)
0 --- [(F(X)|B(X)), (W(X)|B(X))] --- [p]
1 --- [(!F(X)|P(X))] --- [t]
2 --- [(F(X)|S(X))] --- [s]
World:
w = (B(p)=1 B(t)=1 B(s)=1 P(p)=0 P(t)=1

P(s)=1 S(p)=0 S(t)=0 S(s)=1 F(p)=0
F(t)=0 F(s)=0 W(p)=0 W(t)=0 W(s)=0)

Satisfies facts: true
Ranking: 17
lambda(0,w) = 1
lambda(1,w) = 1
lambda(2,w) = 3
k_0: 36
k(w) = 1 * 1 + 4 * 1 + 16 * 3 - 36 = 17

We can see the tolerance pair and the selected world. The
world satisfies the facts and is ranked with 17. The values λi

for each i ∈ {0, . . . ,m} as well as κ0 are shown, leading to
the computation shown in the last line.

By testing the acceptance of conditionals, ZIFO imple-
ments the reasoning behavior of system ZFO-entailment. In
standard mode, the program only returns true or false to
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Figure 1: User interface of ZIFO implementing system ZFO

indicate the acceptance of the query, and in Explain Result
mode, we can make the program show us the whole eval-
uation process. For instance, consider the ranking function
induced by the first tolerance pair shown in Figure 1. Using
the conditional (F(p)|B(p))we can ask whether our bird
Polly usually flies. In Explain Result mode, ZIFO returns:

0: Acceptance by ranking function k
1: k |= (F(p)|B(p)) -> true
2: k( B(p) F(p) ) = 0
3: (B(p)=1 B(t)=1 B(s)=1 P(p)=0 P(t)=1

P(s)=1 S(p)=0 S(t)=0 S(s)=1 F(p)=1
F(t)=0 F(s)=1 W(p)=1 W(t)=0 W(s)=0)

2: k( B(p) !F(p) ) = 1
3: (B(p)=1 B(t)=1 B(s)=1 P(p)=0 P(t)=1

P(s)=1 S(p)=0 S(t)=0 S(s)=1 F(p)=0
F(t)=0 F(s)=1 W(p)=0 W(t)=0 W(s)=0)

2: 0 < 1 ?

We can see that the conditional is accepted. First, for both
the verifying formula B(p)F (p) and the falsifying formula
B(p)F (p), the ranks are derived by finding the most plausi-
ble world satisfying the formula. By comparing both ranks,
the acceptance can be determined. The program provides the
full evaluation tree down to the most basic definition.

Since the chosen tolerance pair is the only minimal
one for KBpen , we thus have B(p) |∼KBpen

zFO F (p). To illus-
trate ZFO-inference for the case of multiple minimal tol-
erance pairs, let KB′pen be the knowledge base obtained
from KBpen by removing the two facts B(p) and P (t).
KB′pen has two different minimal tolerance pairs, but still

B(p) |∼KB
′
pen

zFO F (p) holds. We also have B(t) |∼KB
′
pen

zFO F (t)

which is a plausible inference since in KB′pen , Tweety is not
known to be a penguin.

6 Conclusions and Further Work

For a system Z-like approach for first-order conditionals, we
introduced the notion of tolerance pairs and presented a soft-
ware system computing all minimal tolerance pairs for per-
forming sceptical ZFO-inference. Our current work includes
investigating the complexity and formal properties of ZFO-
inference and developing a precise characterization of the
consistency of a ZFO knowledge base.
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